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ABSTRACT

The master problem in Benders’s partitioning method is an integer

program with a very large number of constraints , each of which is usually

generated by solving the integer program with the constraints generated

earlier. Computational experience shows that the subset B of those

consttaints of the master problem that are satisfied with equality Rt

the linear j rograumiing optinuin often play a crucial role in determining

the integer optimum, in the sense tha t only a few of the remaining

inequalities are needed. W~ characterize this subset B of inequalities.

Though the best upper bound (often attained) on the cardinality of

B is where p is the number of integer-constrained variables that

are basic at the linear programuing optimum, none of the inequalities

in B is implied by the rem. L’~tng inequalities of the master problem.

We then give an efficient procedure for generating an appropriate subset

of the i nequalities in B, which leads to a considerably improved version

of Benth rs ’s method .
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BENDERS’ S METHOD REVISITED

by

Egon Bales and Christian Bergthaller

1. Introduction

Consider the mixed integer program

tim cx + gy

(P) Ax + Dy b

x 0, 1) y q,

y € c4

and it~ lin3ar progranining 
rolaxation (LP), obtained by removing the

condiUon ~~O . Here A is in X r, 
D is in X n, and 0 C R~ is an arbitra ry finite

set.

Benders ( 1 1 has shown that (P) is equivalent to (in the sense of

having the same y-component for an optimal solution, as)

min w

(P
1
) w

0 (5 - ukD)y + u~~ kiS

0 ~~v
kDy +~~% kaT

q y~~’O , y cU

where S 4 T are the index sets for the extreme points and extreme

direction vectors , respectively, of

U ~ c)

— 
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For any yeR°, consider the pa ir of dual linea r programs

(LP(y)) mmn (cxtAx b - Dy, x 
~ 
0)

and

(L D(y) ) tnax [u(b - Dy)~ uA < c)

The standard procedure (also due to Benders) for solving (F) by

using the above equivalence is to consider a relaxation (P1) of

which consists of minimizing w subject to q 
~
> y > 0 , y€ C2 , and some of

the constraints indexed by S and T. At the start , the only cons tra in ts

of (I’1
) may be q V V~ y ~> 0, ycO . A sequence of the following two steps

is then applied .

I. Solve the current (P1). Let (w~ , 
k
) be the optimal solu-

tion obtained . Co to 2.

2. Solve (LD(y
k
)). T.et ~

k be an optimal ex treme point of U, if

one exists; or else , let be an extreme point , and v
k an extreme direction

vector, such that + x~
k6u ~ X > 0, and v1

~(b - Dyk) ~ 0. In both cases ,

def ines for (P1) a constraint of the type indexed by 5, 
while in the

second case , also defines a constraint of the type indexed by T. Add

these constraints to (P1
) and go to 1.

At every iteration, the minimum w~ of the curren t (P
1
) provides

a lower bound on the value of an optimal solution to (P1
) ,  while

uk (b - Dy’) + obtained from solving (~~(~k)), provides an upper
kbound . The lower bound w0 is monotone increasing . The procedure stops

when the upper and lower bounds become equal.

- 
V 

— 

~~~~~~~~~~~~~~~~~:~~~~~~
V V V V .
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The main difficulty with the above procedure is that in order

to generate the subset of inequalities of (P
1
) required to identify

an optimal y, one has to repeatedly solve problems of the form (P
1
) ,

a computationally difficult task. It is therefore of interest to find

other ways of generating constraints for 
~~~ 

In one such attempt,

D. McDaniel and M. Devine t2 1 have temporarily removed the constraint

ysO from (P1
) in the above two-step procedure, i.e., have temporarily

replaced (P1) by its linear programuing relaxation. This change amounts

to applying Benders’s procedure to (LP) instead of (F). In the process

of solving (LP) by Benders ’s procedure , a subset of the inequalities of

(P
1
) is generated. Furthermore, it was found that using these inequalities

to define the initial problem (P
1
) in Benders ’s procedure as applied to

(F) , has resulted in finding an optimal solution to (P) in a few iterations,

often just one (21 .

This suggests that the set of those inequalities of (P1) that are

tight for (w0, y), where (x, y) is an optimal solution to (LP) and — cx + gy,

or some appropriate subset of this set, is a highly desirable starting

point for Benders’s procedure, and may in fact yield an optimal solution

to (F) in one or two iterations . The index set for these inequalities will

be denoted by S (y) , i .e . ,  we def ine

S(y) - jk 1S1v0 - (g - ukD) + ukb).

In this paper we describe a new version of Benders ’s procedure,

which Is a considerable improvemsnt over the original one. First , we-

~~~~~~~~~~~~~~ 

~~~~~~~~
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characi trize the subsystem of those inequalities of (P1
) indexed by

i n terms of the simplex tableau associated with the optimal solu-

tion (~ , y) to (12) . The cardinality of 5(y) is bounded by 2~
’, where p

is the number of basic components of y. This is a best possible bound ,

which s attained quite fre quently. Thus the optima l solution (w , y) to

(LP 1) ,  the linear programsing relaxation of (P1) ,  is usually highly

degene ate (2P is usually considerably larger than n + 1, the number of

ineque ities that have to be satisfied with equality by any basic solution) .

Nevertheless, we show that  none of the inequalities indexed by 5(y) is

redund int, in the sense of being implied by the remaining inequalities

of (P1 . Thus each of these i~equa1ities may be needed to define an optimal

soluti n to (F1) ,  though only e + 1 inequalities are needed to define, to-

gether with the inequalities y. > 0 or y < q
~ 
for the nonbasic components of

y, the optimal solution (w
0, 

y) to (12i
). We give a procedure which generates

as many of the inequalities indexed by S(y) as desired, at the cost of

one pivot for each inequality, except for the f irst one, which requires p

pivots. The improved Benders ilgoritha then consists of first using the

above procedure to generate an initial constraint set for (F
1
), namely

an appropriate subset of the set indexed by S(y) , and then continue as

usual. Computational experiments to determine the optima l number of initial

conatr. inta to be generated are under way.

“V.

— —
V ~~~ —.
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2. The Binding Constraints of (LP1)

An optimal basic solution (x, ~
) to (LP), with the basic and

noobasic components of x and y indexed by I~, ~ 
and I~, ~~ respectively,

can be represented in simplex tableau format as

z — a~ , + t a0j(_x j) + t a~~(-y )
j(J

x 
jejy 

i

(1) — a . + E a14 (—x 3
) + t a~4(—y4) , icI,~

~•° j iJ ~ jcJ “ ~
x y

— a~0 + i; a14 (-x ) + E a1 (-ii) . 1*1

where 
c3 

o~ ‘t jcJ,~, and where (x, y) is defined 
by

and 

- 

f 
:~

° ::‘:
$10
0 i J~~ , a01 < 0

i.J
7 ‘ oi > 0

Here Con — c + gy, the value of the optimal solution (x, y) ,  to (LP).

Note that z is an optimal solution to (LP()), while (w0, y~ ,

whira — aon, is an optimal solution to (LP1) the linea r programeing

relaxation of (P1) (i .e.,  the problem obtained from (F1) by removing

V th. cooditio~~7 i C ~).

V. will essume that A is of fu ll, row rank. Whenever this is not

the cas•, unit vectors corresponding to artificial variables with appropriate

costs can be introduced in order to make the assinaptton hold.

~1 
_ _ _ _ _ _ _ _ _ _ _

~~~~~~~
-I:_

__
~- 2 f~~~~~_ 4 ~~~~~~~ ~~~~~~~
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Now consider x. As a (basic) optimal solution to (LP(y)), x

is clearly degenerate, since substituting y for y in the righthand side vector of

(LP(y)) sets all the basic variables corresponding to the rows indexed by j  in

tableau (1) equa l to zero . Thus there is more than one basis that can

be associated with x. Actually, every basis obtained from (1) by a

sequence of I I I  pivots, each of which replaces some y
~
, i€I~,, with anise

X ji j€J , produces an optimal basic solution to (LP(y)). Not every such

basis, however , corresponds to a feasible solution to (LD(y)), i.e., to

a point usU. Those bases associated with ~ that correspond to feasible

k — k
solutions u to (LD(y)), i.e., to (extreme) points u of U, define the

inequalities of (P1) 
indexed by S(y). These are the inequalities that we

wish to generate.

Let R a (1 ,.. .,r) and N = [l ,...,n) be the index sets associated

wi th x and y r p~cttve1y, ,iI hit N 1 (.iaNty j 
I).

Consider a sequence of s implex tableaus and pivots defined by

the following rule . Let the tableau be

z a~~ + 
~
E

3k
a
~ j

(_x
j ) +

(2 ) x~ a~0 + E~~a~1
(-x~) + 

~~~~~~~~~~~ 
isI~

- + E ;a~j (-x j ) + E ;a~j (-~j ) ~ isI~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where the starting tableau, corresponding to k — 0 , is obtained from (1)

by setting a~~ = a11, ~ 1, j ,  j  # 0; 1 I~ and ~~ for z — x , y;

and

— ~io + 
jsN1 °~~ 

‘ 
i5i°Uçu~o).

The pivoting rule for the kth tableau is to choose i,,sI~ and pivot

either ()fl a1 ~ , where j is defined by1

oj~ 
_____(3) 

1a~~ 1 t ~~~~~~~~~ 
0 t a~~ j t

or on a , , where is defined by

ka
‘ oj 1a

(4) ‘ V — mt~

~~~~~ 
~~~~~~~~ 

0 Ia’~,~l

Note that upper bounds don’t play any role in this rule: y1~
is a lways pivoted out of the basis at its lower bound of 0, and when

the pivof’~ng occurs on a < 0, then x enters the basis with a negative
i~j2

value , i.e., is decreased rather tha n increased from its lower bound of 0.

_ _ _  V_  — 

~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~
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Theore~ 1. l’or any sequence of k ptvots following the rule defined by

(3) , (4~, where 0 k

(5) w
~ 

+ E a~~Y3 
a~~

i.J~

is a valid inequality for (P1) ,  which is satisfied with equality by (w , 
~~

Proof. Let a
1 

and d
3 
denote the 1

th 
column of A and D respectively, and

let iy = (c, g) .  If denotes the basis associated with the k
th tableau

(2) and ~q stands for the vector of basic components of y, then in the

starting tableau (k = 0) we have

0 -la
1 

‘YB B a~ - c
1 

0 , laS

and

‘YB B0 a1 
- C

1 
— ) , j €i:

Therefore u
0 

= y3 B , ’ is a fea sible solution to (LD(y)) .

F urther, the pivoting rules defined by (3) and (4) preserve the signs

of the coefficien ts Oj I t k j  
- ~~ jsJ~, and of course ‘Y~~B~~a1 

- c
1 

— 0

holds or all jsi~ after each pivot.

Henc. each vector — ~ B 1 is a feasible solution to (LD(y)).

Further, we have

a~1 
= ukd

1 
- , ‘~ j eJ~

and

ukd - g
1 

— 0 , is!1’ .

On the other hand, for each 1’ we have
I

1’ -l ka — b U b . V •~~~~~~ 
V

~TVI~ ._I . 
_V_~~~,___~ 

,
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Thus each inequality (5) can be restated as

w
0 

‘~~ (g - ukD y  + ukb

where u1’eU; hence each such inequal ity is valid for (P
1). To show that

it is satisfied with equality by (w , y ) ,  we note tha t while each u1~ —

is a feasible solution to (LD(y)), it also satisfies the complementary

slackness condition

(c - U
k
A)X = 0

for x = x, which is a feasible (and optimal) solution to (LP(y)). Hence

each is an optimal solution to (LD(y)), and therefore

k — —
u (b - Dy) = cx

and adding to both sides gy produces

w = cx + gy

(g - u~D)~ + u~b . Q.E.D.

While each of the inequalities (5) is valid for (P1
) and satisfied

with equality by (w , y) ,  these inequalities do not usually belong to

the set indexed by S(y) (or, for that matter, by S) except for the case

when k — tip , i. e., when I~ — 0. The reason for this is that the

vectors u1~ — ‘YB 
~~I obtained by fewer than II~~ 

pivots are usually
1’ 

~~~~~~~~~~~~~~~
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nonbasic feasible solutions to (LD(y)). To see this, note that each u1’

may have as many as in + positive components, whereas a basic u1’ is

restricted to at most r such components; but for k < ~~~~ ~~~ ‘ r - in.

On the other hand, as the next theorem shows, all the inequalities indexed

by S(y) can be obtained from (1) by some sequence of pivots of the

above type.

Theorem 2. The constraints of (P1
) indexed by S(y) are precisely those

inequalities (5) such tha t = N , and each one of them can be obtained

from the system (I) by some sequence of ~~~ pivots of the kind defined

by (3), (4). Further, none of these inequalities is implied by the other

inequalities of (Fl).

Proof. Sihce A is of full row rank, every basic component of y can be

pivoted out of the basis in exchange for some component of x. When — N,

then — 0, and all the col ‘nns of Bk are columns of A, while ‘YB -

k 1 
k 1’

Then u = c B
1’ 

is a bas ic feasible solution to (LD(y)) , i.e., an ex treme

point of U. Since the inequality (5) associated with each such was

shown to hold with equality for (ii , y), each such inequality belongs

to the set indexed by S(y). Conversely, every inequality indexed by

S (y) is def ined by an optimal basic solution U1’ to (LD(y)), and all such

solutions can be obtained from the system (1) by replacing the components

of y in the basis with components of x , while preserving dual feasibility.

But the rules (3), (4) are easily seen to exhaust the class of pivots

by which this can be don..

— —  T~~
’ , :.~ 

•
;

V
~~



1 

~~~~ V V~~.--

(p - a)y < -

or

P3’ -o(q - y) < 0

which contradicts p 
~ 
0. Q.E.D.

Corollary 2 .1. ~S(y) t < 2~’, where “ ti t . This is a best possible bound .

Proof. There are 2~
’ possible sequences of pivots of the types def ined

by (3) and (4). It is trivial to construct examples in which both types

of pivots are possible at each step, since this is the usual case. The

numerical example at the end of the paper illustrates the point. Q.E.D.

The fact that 2~ is a best bound on IS(y)t, which is attained more

of ten than not, and yet none of the constraints indexed by S(y) is redundant,

reveals an interesting feature of problem (P1
). Since n-p inequalities

of the form y1 > 0 or y1 < q~, corresponding to the nonbasic components

of y, are satisfied with equality by (ii~~, y), only p + 1 inequalities of

the set indexed by S(y) are needed to define the optimal solution (w0, y)

to (LP1). However, since none of the inequalities of S(y) are implied by V

the other constraints of (P1
), they m a y  all be needed to define an optimal

solution to (F
1
). While this is certainly a possibility, empirical evidence

indicates that in most instances the sise of the set needed to id.ntify an 
V

optimal solution to (Il) is closer to p + 1 than to 2~~. Of course acme

inequatiti as indexed by S\$(y) may also be needed.

The rule defined by (3) , (4) can be ua.d to obtain all basic

optimal solutions to (LD( )), hence all the inequalities of (F1) indexed

• by S(~), by starting each time from tableau (1) and applying ~~~ pivots . 
V

-. L~~~_~~_ ~~ 
~~ 

-
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However, after the first sequence of ~~~ pivots, i.e., af ter obtaining

the first basic optimal solution u’ and an associated tableau (2) with

— 0, there are better ways of finding additional optimal solutions,

than by reverting to the starting tableau. A much cheaper procedure

is as follows.

Let the last tableau (2), with 1’ — II I, be of the fons

z — ~~~ + 
~~k

a
OJ

( x
i
) +

(2’)
- a~0 + E k

a
~j

(_x
J
) + E ka

~J
(
~

y
J
) ~ iiI~ ~

with I — N. This is the same as (2), since for 1’ — II I ,  one has —

We recall tha t < 0, Y jsJ~. Consider now a pivot on a1 1 ,  where

i~.I~
\I is any row such tha t < 0 for at least one JsJ~~, and is

defined by

1’a Io)
~ ) 

oj(9) iSin

isJ~Ia~~1 0

R.usrk 1. Any pivot in a tableau of the form (2’), based o’i the rule (9) ,
produces a tableau of the same form , such that

(10) + E a ~~y1 
>

is one of those inequalities of (F1) indexed by S( ).

- a- -

~~~~
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Proof. The pivoting rule (9) replaces a basis $~~ satisfying

(10)
c~,

JI ’A - c ~ 0

with a basis also satisfying (10) (wi th 1’ replaced by 1’ + 1).

Indeed, the choice of i~sI~\I guarantees the first inequality of (10),

while the choice of j
~ 

by (9) guarantees the second one. Hence

— c_~~~B~~1 is a basic optimal solution to 
(LD(y)) . Q.I .D.

Note that, in order to obtain an inequality (10) from tableau (2’),

one does not have to transf orm the whole tableau , but only the 0 r ow. In

other vords , a single tableau (2 ’) can serve for the computation of all

th. inequalities obtainable by exchanging any one of the basic var iables

x1, t.r ~\I:, for the app ropr i..te nonbasic variable x3, jeJ~.

V 
V 3, An Improved Version of Benders ’s Algoritlm~

• Theorem 1 and Remark 1 prov ide a way of generating the inequalities

of indexed by S(~) at the cost of one pivot for each new inequality

szc.pt for th. first one1 which requires II~ pivots.

La utioned above, though the aaxiu3m a ber of inequalities

obtainable from (1) is 2~~, cbs ni bsr .ctually needed to define a linear

progrem vi se set of optimal solutioes is the s~~~ as that of (1.Pi) ,  I s

i t  p + t .  This does not i~~ly thac ~~~~~set ofp +l tne q u a 1icies of s( )

defies. such a linear pro$r , only that such subsets of p + 1 inequalities

exist. Oss cam sian certain devices to choose the inequalities that on•

gsmavates so u to make it very likely that they belong to such a subset , but

these devices has. a c.~~utatiouat cost, ~i~d even if they prodece

I 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-~ V~~~~~~~~~~~~~

- 
-
~~~~ 

—— ,.
~ ~~~~~~ 

- 

~ 

•
~
• ~~V ~ :~ ~~
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p.

the desired result, it doss not follow that the set of inequalitie, thus

obtained is an adequate representation of (P1) in the sense of having

the same optimal solution (with ycC~) as

Therefore, in the algorithm described below, we chose the option

of first generating t inequalities of 5(y) in a relatively ásy way,

where t is some integer satisfying p + 1 < t <~~ + 1, and then checking

whether any additional inequalities are needed to define a linear program

that adequately represents (LP1). In case the test is negative, it also

delivers one of the additional inequalities that are needed. This is

repeated , if necessary, until an adequate representation of (LP
1
) is

obtained. At that point the problem (
~~

) defined by the current set of

inequalities (and the constraint y e C~) is solved. The solution is then

tested for optiaality, and if the test fails , the procedure is continued

as in the original Benders a~~orithm. V

To simplify the eXposition, we ase~ma that (LP(y)) is feasible

for all y generated during the procedure, i.e., that T • 0 in (P 1) .  The

extension to the general case is obvious.

Modified Benders Algorit hm

$te~ 0. Solve (LP) by the simplex msthod for linear programs

with bounded varia bles , and drive out of the basis every y~ which is at its 
--

lower or t’~~er bound. Let the opt ima l solution obtained b* (x, ), let

— c + g ,  and let the associated simplex tableau be of the form (1).

Make this into a tableau of the form (2), with k — 0, by replacing a~0 with
• 

a 0 .a~0 + Z a ~1~ • i4:ux;uco}.

— 
..
~
. ~~~~~ :: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~ ~~~~~~~
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—

~~~~

Set t to the desired value (p + I < t < n + 1), set ~ — ., and go to I.

Step 1. If I~ — 0, go to 2. Otherwise choose ~~~~~ and pivot

either on ~~ or on a~ ~ where and are defined by

a~j I Ia
~_Ii(3) — — win k

jsJ~~a~ > 0  Ia i*.j I

and

1k k
0j2 _ _ _ _ _ _— 

~~~~~~~ 0 Ia~~I 
•
1

resp ectively . Then set k k + I , and go to 1.

Step 2. Generate the inequality

v + r a k y > 5 IL
0 

J~~~~ O J J

If the emeber of inequalities generated so far exceeds t, or

• I~ %.I — 0, or a~ > 0, V jcJ~, V icI~\I, go to 3.

Othe rwise , choose isI~\I such that a~ <0 for some jsT~, pivot

ona~ dsfinsd by
1*

a
• oj~ 1oJ.i

~~i j.J~I~~~~< o
Ia
~*j

t
’ V

and go to 2.

— ~—
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Step 3. Let W be the index set for the inequalitie, generated

so far. Solve the problem

V
.~in(v Iw + £ a~1y1 

>gk ,ktW; 0 
~ 

y ~ q),

and let (vk1l , y~~~) be the optimal solution found.

I f v~~~ <v0,go to 4. Otherwise setk’-k+land go to 3a.

Step 3a. This is Step 3 with the following changes:

(a) y sC~ to be added to the constraints of the minimiaation problem

(b) 
~~ 

to be replaced by ~

(c) If v~
’1 

~ ~~, 
stop: ~k is optimal.

Steo 4. Solve the linear program

(LD(y~~~)) *sx(u(b — Dy~
4)juA ~~~ 

c~} V

(or its dual (LP(y1~
11 )) and let uk~~ be the optimal solution found . Let

‘- wia(0, uk4l(b - Dyk+l) +

If $ ~ v~’Aad Step 4 was entered from 3., stop: ~~~~~ y~~~)

is optil  for

If 0 ~ v~iM Step 4 was entered from 3, then (v~~
1, y~~1) is

optimal for (LP1). Set 0 •., k .- k + I and go to 3..

Otherwise, set k — k + 1 , generate the inequality

v + E a h1
.y 4~~ .

k
00

usienak .J~b and a~, is the j th co.poesuit of (ukD _ $ ) . and $0 tO 3

(if Stop 4 was entered from 3) or to 3. (if Step 4 was sistered from 3.), V

t’t

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Discussion. At every iteration of step 1. a choice has to be made

between the two types of pivots defined by (3) and (4). Since the stre ngth

of the cut obtained by a sequence of steps 1 grows with the su e  of the

coefficients ~~~ and -a~~ , JaN , it seems reasonable to choose the pivot

which produces the greatest increase (smallest decrease ) in some weighted

sum of these coefficients , i .e. ,  in

— a~, +

As to the weights ~~~~ one would like them to be proportional to

probability of being equal to q
J 

in an opt imal solution . However,

such information is usually not available • On the other band , one may

have some information on the number ‘~‘ of variables y~ that have to be at

their upper bounds in an optima l solution. If so, one can use — — y/~i~, V

In the absence of any infor~ation of this type, a reasonable rule seems to

be to use A~~— X — l / 2 . V J .

To implement the above choice rule , one can introduce a coli

a
~ 

— ~~~~~~

• with components a~~. Then the change in as a result of the pivot at

step k (i.e., the amount ~ — - ~1i) is
• 

(...~k )
k k -— 

~~~~~ 
- - ~~~ k 4

• ei*
j*

• for J~~_ J
1
and j~~.J 2, and~~~Cafl alVay5 be mede flOnise$ativ*. To

accomplish this , one chooses i~ i1 (i.e., a~ ~ 
>0)  if .

~ ~ 
?i(a~ ~ 

+ 1) > 0 ,

and i~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* *
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Simi larly, to Step 2 one has to choose a row isl \1 . Again , a

reasonabl, rule seams to be to amxiaise A — 
juuIL 

- 0r
k , which is this case

can be expressed as a function of the index i (using the s~~~ coluen

a~ as above);

k k 
(-a~1

)

au 
~

Here 
~i 

is the pivot cols j
~~~ 
prescribed by (9) for I. One

then pivots in the row i for which 6(i) attains its xi~ over

subject to sass condition defined so as to prevent the rep etition of bases

(for instance , the condition may require all vari ables leaving the basis

to remain nonbasic f or  a certain number of iteratio ns) .

4. Numerical Examele

Consider the probl.r

sin x1+ x2+3x3+5x4 +2Y7~4YØ
x1- x2+ x3-2x4+y5 +2y7~ y8 — 1

(P) x1-2x2-8x3+6x4 ~~~~ y .+ Yg — 17

x
1 ~0, J — 1,...,4; 

~~~~ 
— 0 or 15; 77~ y8 • O a r  S

~ VV •

A

11 —

• ~~~~~~~~~~~ V V ~~~~ ~~~~~ :: ~~~. Vç~;:~~~ 
~~ . 

• 
V 

~~~~~
- - ________________________________ - ~~~~-— - - — •~~V ~ •~~~~~~~~~~~ ______
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Step 0.

The optimal solution to (LP), the linear program obtained from

(P) by replacing y5, y6 
0 or 15 , y7, YB — 0 or 5” by “0 < y5, y6 ~ 15,

0 c~ y 7,  y8 — 
5,” is — 0, j 1,...,4; y

5 
— 6, 

~
‘6 12, y

7 
— 0 , y5 — 5,

with the  a~~s e ’c i ate d  simplex tableau 1, whe re N1 — [81 (the index set for

the rt onba sic ~~ ‘~oflefl S of y at their upper bound).

I -x1 -x2 -x3 ~X4 -y7 -y8

r_20 -l -l -3 -5 ’ -2 ~e — cx + gy — -20

y
5~~~ 

6 
~fl 

— l 1 —2 2 — l
12 

— 

1 -2 -8 6 -.1 1 y8 
— 5

Tab leau 1.

We rep lace ai0 by a~ — a~0 + Sa~~ for i • 0, 5 , 6 , and form the

column a~ a~ + a~ . This • ‘od uces tab leau 2.

I 
~x1 -x2 -x3 -x4 -y7 -y8 -y~

z 0 -l —l -3 —5 —2 4 2

i [fl .4 1 —2 2 —l 1

1 -2 -8 6 -l 1 __2_ 
IV

2.

h~ ,e — 2 , n — ~ rni~l we set. t • 4 ( p 4  1 ~ 4 ~ n + 1).

Step 1. We choose i~ — 5. For choosing the pivot type, we use

the rule dtsouesed at the •nd of seation ~, with . . ‘

V 
- V V~~~~

’
V ~~~~~ 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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Since - ~~~~~~~ + 1) — 0, we choose j
~ 

— j~~
, defined by (3).

Pivoting on 
~~ 

1 and updating a3 (by adding the 
new non-basic

column corresponding to y5
) yields tableau 3.

~~
‘5 

-x2 X3 -X~ 
~~~~~~~ ~“8 ~~J

z 1~~ 1 —2 — 2 — 7 0 3 4

x1 1 —1 1 —2 2 —I 2

lb -1 —l -9 —3 2 —2

Tableau 3.

Here I~ — ( 13, J~ = [2 ,3,4),  i~ — (6), 
4 — (5,7,81. Since ~ 0,

we go to 1.

Step 1. We choose i~ = 6 and, since a~0 
- ~(a~3 + 1) — 31/2 > 0, we

again choose j~ = j1. Pivoting on a~8 and updating 
a
3 
then yields tableau 4. 

V

I ~5 ~~2 ~ X
3 

-y
6 

-y7 Y8 -Yj

3. 23 79 7 21 38 25

::U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tablea u 4.
2

Since I
~~
z 0, we go to 2.

St ep~ 2. From tableau 4 we generate the inequality

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We apply 3 more times Step 2 in order to obtain t — 4 cuts.

V 
The .~equence of pivots *nd the cut s obtained by them are sh ’wn in

tableaus

V - __________
_______________________________________________________________________________________ - •VVV-_-V__ ,, __

~4 t



-22 -

I -y5 -x1 -x3 ~
‘6 ~l ~~

V
8

16 23 
-~~ 

11 
~~z 

~ 1 0 2  10

x 2~~~4 t ~~~~ 1O~~~~10 
1 -‘

~~~~~

Tableau 5.

3 11 59 7wo 5 y5 + 10 y6 2 y7 # l0 y8~~ - 2

I -y 5 ~ X j~ ~ X
4 ~~

‘6 ~ 7

2 16 4 38-7 -
~~~~~~-j~~~~~

-7 -j~~~~~
- 2

5 8 9 1 3 7
X
2~~~~~~~ 10 10 1 l0 2 10

3 2 1 1 1 3
X

3 2 10 0 
1 - 

10 2 
- 

10_-
Tableau 6.

1 2 19wo 
- 5 )’5 - 

S~~6 
- 2~7 +~~~~Y8~~~- 7

I -y 5 -x 2 -x4 ~‘6 ~~~

23 11 16 79 2 6 23z - 9 
- 

9 
- 

9 ~~9 9 —i
25 8 10 10 1 15 7
9 9~~~~ 9~~~~9 ~ 9 9

16 1 1 8 1 3 2 -
X

3~~~~~ 
~ ~ ~~~ ~~~ ~ 9

Tableau 7.

11 2 2 23w
o + —i- y5 -~~~y6 +~~~y7 +— ~

- y
8
�_  

9

Since we n~~ have t — 4 inequalities, we go to 3

—

~

—- _ iii 1
~ 

~~~~~~ 

“V~~ ~~~~~~~~ V • ~ ~~~~~~~~~ ~~~~T : ~ V :  ~~~~~~~~~~~~~~~
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p

Stçj~j. ~4e solve 
the liflear program

mm w
0

1 7 2 1 19
W + 

~~~~~~~~~ ~~y6~~~~T y 7 +
~~~~Y8 ?

8 3 ii 59 7
w

0
- ~~y 5 +~~~~y6 - j ~ Y 7 +~~~~Yg � ~

1 2 19
5 )’5 

- 2 y7 +— ~•-y 8 � -7

11 2 2 23 23
W + 9 Y 5 9~~’6~~ ~~~~~~~~~~~~~~

0 y~ , y6 — 
15 , 0 y

7
, y

8 
- 5

and find tha t it s  optima l solution is (~~, ~) = (—20; 6 , 12 , 0 , 5).

Since ~ > w = -20, we go to 3a.
0 0

Step 3a. We solve the discrete prograeming problem obtained

from the linear program of ~..ep 3 by requiring each componen t of y

to be equal to one of its bounds, and find the optimal solution

~~~ 9) (-12 ; 0 , 15, 0 , 5). We go to 4.

Step 4. We solve (LP(y) ) rather than (LD(y) ) by setting

0 , 
~“2 — 15 , y 3 = 0 , y4 = 5 in Tableau 4 , and reoptimizing the

resulting linear program, as shown in Tableaus 5-6:

~~~ ~X4 
_ _ _ _ _  :: ~C4

f z -20 - —7 — 12 —j -j

9 ..! 
10 1.0

X 2 
~~~~~~~~~~~~~~~ : ::~ :~2 10 3 S 9

Tab leau S Tableau 6. - V

- -
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Since the optimal solution ~ gives c~ + g~ — -12 
~~ ~~o’ ~~

is an optima l solution to (P1), 
and (x, y) is an optimal solution to (P) ,

with = (5 , 0 , 1 , 0 ) ,  ~ — (0 , 15 , 0 , 5) ,  and c~ + g~ -12.
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The proof of the last statement in Theor eis 2 (starting on top
of page 11) has a flaw. The Theoreei itself , however, is corre ct.
Please substitute the attached proof.
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To prove the last statmuent of the Theorem by contradiction,

suppose that for some hsS(y) the inequality

+ 
~~

which can also be written as

(6) w0 +(u
hD_ g ) y > u hb ,

is implied by the other inequalities of (P1). Then

uhb = min(w0 + (u~~ - g)y~w + (u~~ - g)y � u~~, ksS\fhj, 0 ~ ~ qJ,

and this minimum is attained for the same point (w0,y) for which w attains

its minimum in (P1). Furthermore, the dual of the linear program in the

brackets has an optimal solution (X) satisfying

~II~ X.K 1,X � 0;
kaS- ~h}

h —< u d ~~_ B
3~ 

ify
1
= 0

- g )  u”d - g ,  if0< < q
k.S~th)

’
~ 

j j  j  j
h —u d

3 
- g

~, if y
~ 

=

Denoting N~ = (j aN 10 <~~~~~ < q), from the above we have

(7) ~~ - uh)d = 0, jcN~keS-(h) -~

Furthermore, any constraint with a positive multiplier Xk must

be tight at (w0,y), i.e., Xk > 0 implies keS(~). 

- -—.- -~---.~--.
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On the other hand , each ~k, k.S(~), is a basic op tima l solu tion to

LD(y). Though the bases associated with the various ~
k
, keS(y) , dif fer

among themselves, they all have among their basic columns those columns

of A which are basic in the optimal solution (x,y) to (LP). If R+ denotes

the set of these columns , then IRI = in - Iwi, where in is the number of rows

of A (and of D). Thus, we have

k +u a i = c
~ 

, i€ R

for every keS( ), and hence

(7 ’) (~ Ak
tl - uh)a = 0, isR~.i

Denoting

Ak
u
k~~~

u ,
kaS-Ch i

equa tions (7) and (7 ’) can be res ta ted as

— 0 ,

(8) 
+6a1 — O  , icR ,

where 1N1I + lR~] 
= in, and where the in vectors ~~ a1 are linearly

independent, since they are the columns of the basis associated with

(x ,y) .

Thus the unique solution of (8) is 6 = 0, and from (7) this implies

that the vectors ~k ksS() are linearly dependent, contrary to the

assumption that they are extreme points of U. Q.E.D.


